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Abstract 

In the most general case the orientation distribution of 
crystals in a polycrystalline sample is to be described 
by a function of orthogonal transformations which 
splits up into two functions of rotations corresponding 
to right- and left-handed crystals. The properties of 
these functions are influenced by crystal and sample 
symmetry. The rotational subgroup of crystal sym- 
metry leads to symmetry relations which may be 
written in the form of selection rules. Elements of the 
second kind of the crystal symmetry give rise to a 
determinability condition, according to which the 
texture function may be split into a part J~(g) which can 
be determined from polycrystal diffraction experi- 
ments and a part f (g)  which cannot. The deter- 
minability condition may take on three different forms 
according to whether the crystal symmetry contains a 
centre of inversion, a mirror plane or a 4 inversion axis. 
In the case of normal scattering the Laue symmetry is 
to be considered instead of the true crystal symmetry. 
The sample symmetry is to be described by a 
black-white or Shubnikov group containing four kinds 
of elements which give rise to four kinds of symmetry 
conditions in the function f(g). The sample symmetry 
may be a conventional one consisting of one-to-one 
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relationships between crystal orientations. It may, 
however, also be a non-conventional one defined by an 
integral relation between an infinite number of crystal 
orientations. 

1. Introduction 

The texture of a polycrystalline material is defined as 
the orientation distribution function f (g)  which de- 
scribes the orientation density or relative f requencyfof  
crystallites having the orientation g with respect to the 
sample coordinate system. The crystal orientation g has 
usually been defined as a rotation which brings the 
sample coordinate system into coincidence with the 
crystal coordinate system (or vice versa). 

This definition of crystal orientation is, however, not 
general enough since it does not allow one to deal with 
enantiomorphic crystal classes consisting of right- and 
left-handed crystal forms. But also in the higher 
symmetric classes this definition is not sufficient in as 
far as it does not allow one to take symmetry elements 
of the second kind of the crystal symmetry correctly 
into account, i.e. mirror planes, inversion axes, and the 
centre of symmetry. It is thus necessary to generalize 
the definition of crystal orientation to orthogonal 
© 1981 International Union of Crystallography 
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transformations c~ which include also transformations 
of the second kind transforming a right-handed 
coordinate system into a left-handed one (Esling, 
Bunge & Muller, 1980). 

A polycrystalline sample may exhibit a symmetry of 
its own, the statistical sample symmetry, which is 
independent of crystal symmetry. This symmetry has 
been described by point symmetry groups (Weissen- 
berg, 1922; Paterson & Weiss, 1961)which establish a 
statistical equivalence between certain sample direc- 
tions related to one another by the symmetry elements 
of these groups (including symmetry elements of the 
second kind). In consequent pursuance of the 
generalized concept of crystal orientation, the concept 
of the statistical sample symmetry needs also to be 
generalized. The equivalence of two sample directions 
in the statistical sense must be judged by the ensemble 
of crystal directions falling into the respective sample 
direction (the inverse pole figure of this sample 
direction). In the generalized concept, crystal directions 
of right-handed and left-handed crystals are to be 
distinguished although they are crystallographically 
equivalent (a similar distinction is necessary also in 
non-enantiomorphic crystals). In the former concept of 
sample symmetry this difference could not be taken 
into account. Thus, an additional attribute is intro- 
duced in the concept of sample symmetry which may 
take on one of two values, i.e. right or left. This is, 
exactly, the concept of Shubnikov's black-white groups 
if one identifies right with white and left with black. A 
correct description of sample symmetry thus requires 
Shubnikov groups instead of the usual point symmetry 
groups (Bunge, Esling & Muller, 1980). 

It is the purpose of the present paper to deduce 
thoroughly the consequences of crystal and sample 
symmetry on the orientation distribution function with 
the complete description of crystal orientation by 
orthogonal transformations instead of rotations only. 

It will be shown that symmetry elements of the 
second kind in the crystal symmetry give rise to a 
superposition of pole figures, which, in turn, leads to the 
indeterminability of a certain part of the texture 
function. This was pointed out for the first time by 
Matthies (1979) in the specific case of the centre of 
inversion as a symmetry element of the second kind. 

The determinability condition is mathematically 
identical with the symmetry condition required by 
certain non-conventional symmetry elements of the 
sample symmetry. In the former, incomplete, concept 
of crystal orientation, considering only rotations, these 
two conditions could not be distinguished. The deter- 
minability condition in the case of centrosymmetric 
crystals (l = 2l ') was thus assumed to be a symmetry 
condition which is, however, in general not the case. 

The fact that part of the distribution function 
remains indeterminable from polycrystal diffraction 
experiments leads to a falsification of the true distri- 

bution function. In the specific case of centrosymmetry 
this so-called ghost structure has been extensively 
studied in the last two years by Matthies (1980, 1981), 
Matthies & Pospiech (1980), Jura, Lficke & Pospiech 
(1980) and Liicke, Pospiech, Virnich & Jura (1981). 

The 'indeterminable' part of the texture function is 
not 'absolutely' indeterminable. Four methods have 
been proposed of how to determine at least an 
approximation to the indeterminable part. In principle, 
the indeterminability arises from the superposition of 
pole figures. It does not occur in individual orientation 
determinations (Bunge & Esling, 1979a,b; Wenk, 
Wagner, Esling & Bunge, 1981). If the distribution 
function contains zero ranges then the indeterminable 
part is exactly determined in these ranges and can be 
extrapolated to the non-zero ranges (Bunge & Esling, 
1979a,b; Esling, Bechler-Ferry & Bunge, 1981). If it is 
assumed that the true texture function is a super- 
position of a low number of Gaussian components then 
a fixed relationship exists between the indeterminable 
and the determinable part (Jura et al., 1980; Liicke et 
al., 1981) from which the indeterminable part can be 
obtained. And, finally, the specific indeterminability 
introduced by Friedel's law can be circumvented by the 
use of anomalous scattering (Bunge & Esling, 1981). It 
is, however, not the purpose of the present paper to deal 
with the specific features of the ghost structure, nor will 
the question be discussed how the indeterminability can 
be overcome. 

2. The orientation distribution function 

In order to describe crystal orientations in a poly- 
crystalline sample we fix a rectangular, right-handed 
coordinate system K A in the sample. Another coordin- 
ate system K n is fixed in each crystal. It consists of 
equivalent crystal directions in all crystals. The 
orientation of a crystal is defined by the orthogonal 
transformation o which transforms KA into Kn 

K n =  o K  a. (1) 

The transformations o form a group, the orthogonal 
group C~(3). If K n is right-handed, the same as KA, then 
the transformation o is a rotation g. If Kn is 
left-handed then o is an element of the second kind 
which may be considered as the product of a rotation g 
and the centre of inversion, gI. The orthogonal group 
thus consists of the elements 

c~(3) = { o } = {g,gl}. (2) 

Accordingly, (1) can take the two forms 

K n = g K  A (3) 

Kn = glKA = gK], (4) 
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where Ka* is a left-handed sample coordinate system 
which consists of the opposite directions compared 
with the ones forming Ka • 

K~ = IKA. (5) 

The rotation g may be represented as the product of 
three successive rotations about the Z ,X ,Z  axes, 
respectively, i.e. the Euler angles 

g = gZ(c&) gX(¢) gZ(~pl ) = {c&,#, ~p 2 }. (6) 

There is no continuous path in the group 0(3) leading 
from an element g to an element of the second kind gI, 
i.e. the orthogonal group c~(3) consists of two 
connected components. The orientation distribution 
function thus splits into two separate functions (Esling, 
Bunge & Muller, 1980) describing the orientation 
distribution of the right- and left-handed crystals 
respectively: 

f (gI )  = M L fL(g), 

where the factors M R and M L describe the relative 
amount of right-handed and left-handed crystals 
respectively. 

M R + M L =  1. (8) 

Both functions are normalized according to the 
condition 

f fR,L(g) d g =  1. (9) 

Where R,L means that a relation of this type holds for 
fR as well as for fL. 

The orientation distribution function can be 
developed into a series of generalized spherical 
harmonics 

+l 

fR,L(g) : ~, ~ Z C? 'Lmn Tlmn(g) • ( 1 0 )  

1=0 m=--l n=-l 

The axis distribution function A (h,y) is defined by the 
integral of the texture function over all crystal orien- 
tations for which a crystal direction h is parallel to the 
sample direction y (Bunge, 1969). A function of this 
type can be defined for right- and left-handed crystals 

1; 
A",L(h,y) = ~--~ fn,L(g)dg. (15) 

hlly 

This function obeys the relation 

A R'L(--h,--y) = A R'L(h,y). (16) 

It has been shown (Bunge, 1969) that the axis 
distribution function of right-handed crystals can be 
expressed by the coefficients C~ nn of (10) by 

4;,r c~mnk~m(h) kT(Y) " (17) 
AR(h'Y) = E Z Z 2l +-------~ 

l m n 

The identical relation holds for left-handed crystals if 
the sample direction y is replaced by the 'left-handed' 
direction y/. If it is, however, to be referred to the 
right-handed sample coordinate system K a it is (Bunge, 
Esling & Muller, 1980) 

4zc 
AL(h'Y) = E E E 2 l + 1  

l m n 

- -  ( -  1)1 c~mn k•m(h) kT(y). 

(18) 

If we do not want to, or if in a considered problem it is 
not possible to, distinguish between the direction h of a 
right-handed crystal and the direction h of a left-handed 
crystal falling into the sample direction y, we define a 
superposed axis distribution function 

.,4(h,y) = MRAR(h,y) + MLAL(h,y). (19) 

4. Crystal symmetry 

3. The axis distribution function 

A crystal direction h is defined by its coordinates 
h I h 2 h 3 in K s which may be written 

h =  {hlh2h3}K s. (11) 

Similarly, for a sample direction, 

Y= {Y,Y2Y3} Ka. (12) 

The corresponding sample direction in the left-handed 
sample system K~ is 

Y / =  {YlY2Y3} KI. (13) 

It is related to the direction y by 

y, = Iy  = - y .  (14) 

The crystals may exhibit symmetries. This means that 
an orthogonal transformation z, c brings the crystal 
lattice into a position indistinguishable from the first 
one. Two crystal directions h and h' related by a 
symmetry operation are symmetrically equivalent, 
which we designate by the symbol =, 

h ' =  J h ,  h ' - h .  (20) 

Similarly, the two coordinate systems K s and K~ are 
symmetrically equivalent 

K;~= o°Ks, K~= K s. (21) 

The coordinate system K~ is related to K A by the 
orientation o' which is equivalent to z, 

K~= ~CK~= ~c ~K A = / K  a (22) 
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0 ' =  o ~ o, 0 '-= o. (23) 

The symmetry elements o c form a group, the point 
symmetry group of the crystal. They may be of the first 
or second kind 

(24) 

The. equivalence of ~ and ~' in (23) requires the 
invariance of the function f with respect to the 
transformation o c 

f (  a~ ~) = f ( ~ ) .  (25) 

Since both o and o c may be of the first or second kind, 
(25) splits into the four relations 

fR(gC g) = fR(g), fL(gC g) = fL(g), (26) 

fL~C g) = fR(g), f R ( ~  g) = fL(g), (27) 

M R = M L : ½. 

Similarly, it is required for the axis distribution 
functions 

AR (gO h,y) = AR (h,y), 

AL(gC h,y) = AL(h,y), (28) 

A L ( - ~  h,y) = A R (h,y), 

AR ( - -~  h,y) = AL(h,y). (29) 

5. The determinability condition 

In polycrystal diffraction experiments symmetrically 
equivalent crystal directions, falling into the same 
sample direction y, cannot be distinguished. Hence, we 
can define a symmetrized function which is the mean 
value over all functions obtained by the application of 
all crystal symmetry elements. It is to be noted that the 
inversion centre relating a right-handed crystal to a 
left-handed one is not an element of crystal symmetry 
although the corresponding right- and left-handed 
crystal directions are indistinguishable in polycrystal 
experiments, too. In the case that the crystal symmetry 
group c~ c contains only elements of the first kind we 
have thus to define symmetrized functions for the right- 
and left-handed crystals separately: 

1 
"4R'L(h'Y) = -N Z AR'L(gCh'Y)' (30) 

where N is the order of the group O ~, i.e. the number of 
its elements. 

Owing to the symmetries of the orientation distri- 
bution function (26), it follows with (28) 

• 4R'L(h,y) = A R'L(h,y). (31) 

If the crystal symmetry contains elements of the second 
kind, then there is only one crystal form which may be 
considered as right- and left-handed at the same time. 
In this case the symmetrized function must be defined 

A(h,y) = ½[AR(h,y) + .4L(h,y)l. (32) 

With (30) this may be written 

A(h,y) = ~ A"(gCh, y) + ~ AL(~h,y) , (33) 

where now N'  is the order of the rotational subgroup of 
the group of crystal symmetry. 

Because of (28) this is 

A(h,y) = ½[AR(h,y) + AZ(h,y)l. (34) 

Because of (29) A L is related to A R by any one of the 
elements of the second kind ~c I: 

.4(h,y) : ½[AR(h,y) + AR(--~ h,y)]. (35) 

The elements of the second kind of the crystal 
symmetry are inversion axes of crystallographic type, 
i.e. 

~' I = 1, 2, 3, 4, 6. (36) 

Since 3 contains ]- and 6 contains 2 only the three 
elements of the second kind 

~ c I =  1, 2,4 = l , m ,  4 (37) 

are to be considered. It is further to be mentioned that 4 
contains a twofold axis. Let us further assume that the 
axes in (37) are parallel to the Z axis of the crystal 
coordinate system KB. (This restriction can later on 
easily be dropped by a transformation of the coordinate 
system KB. ) The rotations ~' can then be written 

- -  0 , 0  K - - 1  2, 4. (38) 
~ =  K '  ' ' 

If the crystal direction h is expressed by its spherical 
polar coordinates #/~ instead of the Cartesian coordi- 
nates h 1 h 2 h 3 in K n, 

h =  {~,fl} Ks, (39) 

then the direction -~c  h has the polar coordinates 

With the definition of the spherical harmonics 

1 
k~(h) = ~ P7~(¢) eimf ~ (41) 

and the relation 

.ff~n( 7z'- ¢)----- (--1)/+mfi[n(#), (42) 
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this leads to 

kT'(-gC h) = (--1) t+2mm k~n(h). (43) 

With (35) and (17) one obtains 

4zc c~mn½[ 1 + ( - 1 )  t+2m/K] 
A(h,y) = Z Z Z 2l +-------~ 

l m n 

× k~'m(h) k~'(y). (44) 

If we put 

~mn= cl~mn ½[1 + (--1)t+2m/K], (45) 

(44) becomes 

41r t~'" k~m(h) kT(y ). (46) 

! m n 

Equation (46) has the same form as (17). Hence, only 
the coefficients C~" can be obtained from experi- 
mentally determined axis distribution functions A (h,y). 
They define a function 

oo + !  + !  

f (g)  = ~ y ~. ~[nn Tlmn(g) (47) 
l=0 m=-I n=-l 

which can be obtained directly from polycrystal 
diffraction experiments (cf., however, Friedel's law). 
The function 

~(g) = f(g)  - f(g) (48) 

cannot be obtained directly since the coefficients ~S nn 
belonging to this function are being multiplied by the 
factor in square brackets in (45) which is in this case 
zero. The function ~(g) is thus 'blotted out' because of 
the superposition of the axis distribution functions 
belonging to crystallographically equivalent crystal 
directions. In the various crystal symmetry groups, the 
determinability condition takes on the form given in 
Table 1. It must be mentioned that the indeter- 

minability of the part ~(g) is a consequence of 
polycrystal diffraction. A condition of such a kind does 
not occur if f(g)  is determined from individual crystal 
orientation measurements (Bunge & Esling, 1979a,b). 

The indeterminability of the part ~(g) is not always 
an absolute one as one might conclude from (45). As a 
distribution function of crystal orientations, the func- 
tionf(g) cannot be negative 

f(g)  = aT(g) + ~(g) -> O. (49) 

If one knows - as is frequently the case - that f(g)  
must be zero in certain ranges Z ° of orientations g, then 
~(g) is known in these places, too, because of the 
relation 

fi(g) = -aT(g) in Z °. (50) 

It has been shown that the knowledge of fi(g) in Z ° can 
be used to calculate an approximation to J~(g) in the 
whole orientation space (Bunge & Esling, 1979a,b). In 
the case of ideal textures consisting only of one 
orientation go and the range spread about it, the zero 
range is so large that (50) allows one to determine fi(g) 
to a high degree of accuracy. But also in more realistic 
cases such as the rolling texture of copper the zero 
range seems to be large enough practically to over- 
come the indeterminability condition (Esling, Bechler- 
Ferry & Bunge, 1981). 

It is further noted that the diffraction process usually 
adds an inversion centre to the crystal symmetry, the 
effective crystal symmetry thus being the Laue sym- 
metry. This is known as Friedel's law. As is seen in 
Table 1, Friedel's law always adds the determinability 
condition l = even. In the case of centrosymm_etric 
crystals this does not change anything. In the case 2 the 
additional condition m = even occurs which corre- 
spond_s to a twofold axis in the direction of 2 and in the 
case 4 the additional condition m/2 = even corre- 
sponds to a fourfold axis which are both not present in 
the crystal symmetries. 

Friedel's law does, however, not hold in certain cases 
of anomalous scattering in the vicinity of an absorption 
edge of one of the elements in the crystal structure. In 
these cases it will be possible to obtain terms with odd 
values of l in the series expansion of polycrystal 
experiments and only in these cases is it possible to 
obtain the complete 'determinable' part f(g)  according 
to Table 1 (Bunge & Esling, 1981). 

Finally, it must be mentioned that the crystal 
direction h of a right-handed crystal is indistinguish- 
able from the same direction of a left-handed crystal. If 

Table 1. The determinability condition for the three 
types of symmet~ elements of the second kind 

Determinable 
parU7(g) 

Indeterminable 

partfi(g) 

Crystal symmetry 

i = x  ~=m 

l + m  l+ 

C i 
C2h 
D2h 
C4h 
D4h 
C3t 
D3a 
C6h 
D6n 
T~ 
Oh 

Crystal symmetry groups 

2/m 
mmm 
4/m 
4/mmm 

3m 
6/m 
6/mmm 
m3 
m3m 

C s m 
C2v mm 
D2d 4 2 m  

C4v 4mm 
C3v 3_m 
C3h 6 
D3h 6 2 m  

C6v 6_mm 
T d 43m 

m even 

2 

odd 

D2a 42m 
T a 43m 
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the sample contains right- and left-handed crystals at 
the same time, as will be the normal case in the 
enantiomorphic crystal classes, then only the axis 
distribution function A(h,y) of (19) can be measured. 
With (17) and (18) this leads to 

_ 4~z ~.,~n k~m(h) kT(y ) (51) 
A(h,y) = Z Z Z 2l +-------T 

l m n 

with 

C'rn= M s Cf rnn -k- (--1) t M L Ct{ mn, (52) 

which defines a superposed texture of the right- and 
left-handed crystals 

cx3 + !  + l  

?(g)= Z Z Z ~[nn Tlmn(g), (53) 
l=O m=-l n=-l 

as has been shown by Bunge, Esling & Muller (1980). 

where 1' is a symmetry element which transforms 
right-handed h directions into left-handed ones. This 
group is a black-white or Shubnikov group. The 
element 1' changes, for example, the colour of a point 
from white into black and vice versa. Illustrations of 
these groups have been given by Shubnikov & Belov 
(1964) and in the case of sample symmetry by Bunge, 
Esling & Muller (1980). 

6.1. Convent ional  symmetry  

Sample symmetry may also be considered in another 
way. We may assume the whole sample to be 
transformed in a statistical sense by a symmetry 
operation o p in such a way that every crystal in an 
orientation o has its counterpart in the orientation 

o P. This crystal has thus the same orientation ~ with 
respect to a transformed sample coordinate system KJ. 
It is 

6. Sample symmetry 

The question of sample symmetry is more complex 
than the question of crystal symmetry. It can only be 
answered in a statistical sense. Two sample directions y 
and y' are said to be equivalent if the same distribution 
of crystal directions h falls into them. If we distinguish 
directions h of right-handed and left-handed crystals 
then two kinds of symmetry operations may also be 
distinguished. Those which relate two sample directions 
y and y' judged by the right-handed crystal directions 
(or left-handed crystal directions) falling into them and 
those which relate right-handed directions falling into y 
to left-handed ones falling into y'. 

y ' =  a sy,  y'=--y, (54) 

Y" = o'Sy,  y"----' y, (55) 

where - '  denotes the second type of equivalence. The 
equivalence relations (54) and (55) are defined by 

A S(h, o s y) = AS(h,y),  

AZ(h, oSy) = AL(h,y) (56) 

AL(h, o'Sy) = AS(h,y), 

AS(h, o'Sy) = AZ(h,y), (57) 

M R = M L = ½. 

The symmetry operations o s and o 's form a group in 
which, thus, four types of elements may be dis- 
tinguished 

S ' =  = , ~ I  , 
. . . . . . . . . .  , 

o 's g 1 ,  g 1 I ,  t " ':__-2":_'___: 
(58) 

and 

KJ = ,oP KA KJ -- KA (59) 

K~=  oK~ = o ~PK A = o' K A, (60) 

o ' =  o o  p o ' =  o. (61) 

These symmetry elements form a normal point sym- 
metry group in which two kinds of elements are to be 
distinguished 

~P  = { o p} = {gP,~P I}. (62) 

This kind of symmetry is completely analogous to the 
formerly defined crystal symmetry. It requires the 
symmetry condition 

f (  o ~P) = f ( ~ ) ,  (63) 

which reads in detail 

f " ( g g P ) =  f~ (g ) ,  

fL(ggp)  = fL(g), (64) 

fl.(g~op ) = fR(g) ,  

f . ( g ~ , p ) =  fL(g) ,  (65) 

M R = M I- = ½. 

From these conditions the corresponding ones for the 
axis distribution functions can be deduced 

A R(h, g P  y) = A R(h,y), 

AL(h ,g  p y) = AL(h,y), (66) 

AL(h,-~Py) = AR(h,y), 

A R(h,--gP y) = AL(h,y). (67) 

By comparison with (56) and (57), it follows that 
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: = g ,  ~=~'~. (68) and this requires 

The symmetry defined by (54)-(57) is thus more 
general than the one defined by (59)-(61). The latter 
may be called conventional sample symmetry. The 
conventional symmetry elements are encased by 
dashed lines in (58). 

C[ "'Rm" = ( -1 )  zmm C] ~'Lmn, K = 1, 2, 4. (79) 

In the case K - - 4  the inversion axis 4 contains a 
twofold axis. Hence m is even and the exponent in (79) 
is an integer. 

7. Symmetry conditions 

7.1. Crystal symmetry 

7.1.1. Elements of  the first kind. The symmetry 
rotations gC of the crystal symmetry (24) are assumed 
to be rotations about the Z axis of K8 (this specifi- 
cation can later on be dropped by a transformation of 
the coordinate system Kn). 

gO= - : 7 , 0 , 0  K =  1 , 2 , 3 , 4 , 6 ,  (69) 

with g of (6) it is 

/ "/ geg= ~0~,¢,¢p 2 +_~_ ; (70) 

with the definition of the generalized spherical 
harmonics 

T[nn(qh ¢ (°2) = etm~2 p[nn(~) ein~,l, (71) 

it follows that 

Ttm"(gCg) = Ttmn(g)e im~2"/K)= Ttm"(g)(-1) 2~K. (72) 

The symmetry condition (26) can be written 

f~,L(gC g) __ fR,L(g) = 0. (73) 

With the series expansion (10) this becomes 

~ ~ ~, C~'Lmn[Tlmn(gC g) - T/mn(g')] = 0 (74) 
l m n 

and with (72) 

Z Z Z C]~'LmnTlm"(g)[(-1) zm/x- 1] = 0 .  (75) 
l m n 

From this it follows that 

C[ ~'Lm" = 0 for m 4: Kin', (76) 

m ' = 1 , 2 , 3  . . . .  , K = 1 , 2 , 3 , 4 , 6 .  

7.1.2. Elements of  the second kind. For symmetry 
elements of the second kind, (27) can be written 

f r"R(~g) - -  fR'~(g) = O, M" = MI" = ½, (77) 

from which follows 

Z Z Z [Ck."mn(-1)2mm- c]~,Lmn] Ttmn(g)=O (78) 
l m n 

7.2. Sample symmetry 

We assume the elements of sample symmetry to be 
rotations about the Z axis of KA: 

g~= 0,0, , / ¢ = 1 , 2 , 3  . . . .  , ~ .  (80) 

(Symmetry elements of sample symmetry need not be 
crystallographic rotations.) With (6) we obtain 

/o" / ggS= ~ +-~-,¢,q~2 • (81) 

Similar to (72) one finds 

Ttmn(gg s) -- (--1) znm T']'n(g). (82) 

7.2.1. Conventional symmetry elements. The sym- 
metry condition (64) can be written 

f,,L(ggS) _ f , , L ( g )  = 0, (83) 

from which follows in complete analogy to (74)-(76) 

C] ~'~m" = 0 for n :/: Kn', (84) 

n ' = 1 , 2 , 3 , . . . ,  K = 1 , 2 , 3 , . . . , c ~ .  

The symmetry elements of the second kind ~'Sl l '  
require the condition (65) which may be written 

fl.,R(g~,S) _ fR,L(g) = 0, (85) 

M R = M L = ~. 

In complete analogy to (77)-(79) this yields the 
condition 

Cf 'Rmn = ( -  1)2nm C~,Lmn (86) 

K = 1, 2, 4K'  . . . .  , c~. 

Elements of the second kind of the sample symmetry 
need not be crystallographic ones. Inversion axes of the 
type 2(2K' + 1) contain mirror planes m = 2 and those 
of the type 2K'  + 1 contain I = 1. Hence, axes of these 
types need not be considered separately. An inversion 
axis of the type 4K'  contains a rotation axis of the type 
2K'.  The index n in (86) must, therefore, be a multiple 
of 2K'  so that the exponent 2n/K' is an integer. 

7.2.2. Non-conventional symmetry elements. The 
non-conventional symmetry elements ~ I ,  (58), are 
defined by (56) which can be written in the form 
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A R't~(h, _ ~ s  y)  _ A R'r ( h , y )  = 0.  ( 87 )  

With the series expansion (17) this can be written 

47c 

ZZZ ,+I 
l m n 

C f  ,Lm',/~/re(h) x [k~(-~Sy) - kT(y)l = 0 (88) 

and, with (43), 

4 ~  

l m n 

Cf'Lmnk~lm(h)kT(y)× [(--1) t+2n/K- 1 1 = 0 ,  (89) 

from which follows 

2 n  
C~ 'Lmn = 0 for l + - -  odd, (90) 

K 

K = 1, 2, 4 K '  . . . .  , oo. 

Final ly,  it follows for the non-conventional  symmet ry  
elements g,S 1' with (57) 

AL,R(h, g,S y) _ AR.~ (h,y) = 0, (91) 

M R = M L = ½. 

With the series expansions (17) and (18) one obtains 

47g 
Z ~ 2l +------~ k~'m(h) [Cp'Rm" ~(g,S y) 

I m n 

(__1)/ R Lmn n - C t '  kt (y)] = 0 ,  (92) 

from which follows 

4n  

Z Z Z 2 I + I  
l m n 

k~'m(h) k'](y)[Cf'Rmn(-1) 2n /x -  ( - 1 )  t C ~  'Lmn] : O. (93) 

This requires 

C~ 'Rm'= ( - 1 )  t+2"/x C~ 'Lm', (94) 

K = 1, 2, 3 , . . . ,  oo. 

The symmet ry  conditions, including the determin- 
ability condition, are summar ized  in Table 2. 

7.2.3. Ax ia l  symmetry  ( f ibre  textures). It has 
already been mentioned that  the sample symmet ry  does 
not need to be a crystal lographic symmetry ,  i.e. the 
order K of the axes is not restricted to the values 1, 2, 3, 
4, 6. In the specific case of  axial symmet ry  (fibre 
textures) K is infinite. 

The symmet ry  elements gS of (58) (pure rotations) 
require the symmet ry  condition (84) which reads in this 
specific case 

C~ '~m" = 0 for n 4= 0. (95) 

Table 2. The symmetry  conditions and the determinability condition f o r  the various kinds o f  crystal and sample 
symmetry  

C r y s t a l  s y m m e t r y  

g~ 

(K= 1,2,3,4,6) 

Symmetry condition m = Km' 

~c I 

(K = 1, 2, 4) 

CL.R = (--I) 2m/K cR.L M L = M R = ½ 

2 m  
1 + -  even 

K 
Determinability condition 

Sample symmetry 

Conventional Non-conventional 

gS ~,,s 1'I ~,~ I g,S 1' 

(K=1 ,2 ,3  ..... oo) ( K = l ,  2,4K', .... ~) (K= l, 2, 4K', .... ~) (K=1 ,2 ,3  ..... oo) 

C L,R = (--1)  2n/K C R,L 2n CL, R = (- -1)  l+2n/K CR, L 
n = Kn' M L = M R = ½ l+ even M L M R=½ 

K = 

n = 0  
axial symmetry 

CX3 

CL, R ~ CR, L 

M L = M R = ½ 

O0 

m p 

/even CL,R = (--1) t CR,L 
M L = M R = ½ 

OO I 
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Because 
12= 1'2= 1 (96) 

the second powers of the other symmetry elements 
~ L  g,S 1', ~,s 1' I of (58) are pure rotations too and, in 
fact, they are rotations of infinite order. Hence, the 
symmetry condition (95) must be fulfilled in all cases of 
axial symmetry. In these cases the sample symmetry 
condition takes on the forms given in the last line of 
Table 2 (cf. Bunge, Esling & Muller, 1980). 

In the case n = 0, the generalized spherical har- 
monics (71) are independent of the angle ~p~. They are, 
but for a constant factor, identical with the surface 
spherical harmonics (41). It is 

( 4 n  I1/2 
T/m°(~, (p2) : \ ~  ] e -l(n/4) k~n(~,(02). (97) 

The orientation distribution functions (10) can then be 
developed into a series of surface spherical harmonics 

oo +l 
f"'L(¢,q)2)= Z Z Cf'~mk'~(¢,~°9, (98) 

l=0 m = - l  

depending on two angular variables only. This case is 
usually treated separately, although it is completely 
contained in the general formulae taking into account 
the axis of infinite order. 

7.3. Combination of crystal and sample symmetry 

The sample symmetry element ~,s 1 ' I  (Table 2) 
establishes a relationship between the coefficients of the 
functions in the right- and left-handed crystal coordi- 
nate systems. If, furthermore, the crystal symmetry is 
non-enantiomorphic, i.e. it contains an element of the 
second kind ~ 'L  then there is another relationship 
between these two types of coefficients. One thus 
obtains by combining these two relations 

C L'R = (--1)  2n/Ks (--1)  2m/Kc C L'R, (99) 

where K~ and Ks are the constants K of Table 2 for 
crystal and sample symmetry respectively. 

Equation (99) can be written 

C~, R [ 1 - ( -  1)2"/K, + 2mmc ] = 0. (100) 

It follows from (100) that 

c p ' R m n = o  (101) 

for 

2n 2m 
+ ~ odd. (102) 

Ks Kc 

Similarly, one obtains in the case of the sample 
symmetry g'~ 1' and crystal symmetry ~CL 

for 

C p ' R r n n = o  (103) 

2n 2m 
l + - -  + ~ odd. (104) 

Ks Kc 

Hence, combination of the four sample-symmetry cases 
with the two crystal-symmetry cases of Table 2 gives 
the combined symmetry conditions of Table 3. 

7.4. Change of the coordinate system 

In §§7.1 and 7.2, it has been assumed that the 
symmetry rotations g~, g~ and g,S and the rotations ~', 

and ~,s contained in the symmetry elements of the 
second kind are parallel to the Z axes of the sample and 
crystal coordinate systems KA and KB, respectively. If 
this assumption is to be dropped we have only to 
introduce new sample and crystal coordinate systems. 
Let the new sample coordinate system be 

KJ = glKA, (105) 

Table 3. Symmetry conditions according to the combination of crystal and sample symmetry 

Sample symmetry  

Convent ional  Non-convent ional  

Crystal  symmetry  g~ ~,s l '  I ~s I g,Sl, 

g~ 

m : Kc m' 

n = K s n '  

CL, R : (--I) 2m/Kc CR,L 

n =Ksn '  

m = K c m '  

CL,R = (-- 1)Z"ms CR,L 

CL, R = (-- 1) 2m/Kc cR,L 

CL,R = (--1) 2n/K, Cg.L 

2n 2m 
F even 

Ks Kc 

m = g c  mt 

2n 
l + - -  even 

Ks 

cL,R = (--1)2m/~ cR,L 

2n 
l + even 

Ks 

m =Kc m' 

CL,R = (--1)t+2nms CR,L 

CL, R = (-- 1) 2mmc CR,L 

CL.R = (--1)t+2nms CR,L 

2n 2m 
l + + - - e v e n  

Ks Kc 
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then the orientation g' with respect to this system is 
defined by 

K n = g' KJ = g' gi KA = gKa, (I 06) 

from which follows 

g = g' gt, g, = gg?l. (107) 

The orientation distribution functions (10) can be 
written in this system 

oo +! +! 

f,R.L(g,) = Z Z Z C[ R'L'ns TlmS(g'). (108) 
l=0  m=-l  s=- l  

This may be expressed in terms of the rotation g 

oo +! +1 

fR,L(g) = ~ ~ ~ C[R,Lm s Tlms(gg_fl). (109) 
l=0  m=-!  s=- l  

The application of the addition theorem gives 

oo +i +! +i 

f~,L(g) = E E E E C[ ~'L"~ Titan(g) TtnS(g-['). 
1=0 m=--I s=-I  n=--! 

(110) 

This can be written 

co +1 +l 

fR,L(g) = ~ ~ ~ CR,Lmn Tlmn(g ) (111) 
1=0 m=-!  n=-!  

with the coefficients 

+l 
CR'Lmn : Z C l  R'Lms T ins (e l l ) .  (1 1 2 )  

s=-I  

If the symmetry conditions of the sample symmetry 
(Table 2) are known in the system KA, i.e. in terms of 
the coefficients C~ ,Lm~, then (112) gives the trans- 
formation of these conditions into the new sample 
coordinate system KJ in which the symmetry axes are 
not parallel to the Z axis. 

Similarly, one obtains for a new crystal coordinate 
system 

K~ = gjKs. (113) 

The crystal orientation with respect to this system is 
given by 

K~ = gjKn = gjgKa = g' Ka (114) 
with 

g '=g jg ,  g=g f~g ' .  (115) 

In complete analogy with (108)--(112), one obtains the 
transformation relation of the coefficients 

+l 
C f  'Lmn = Z CI  R'Lsn TlSm(•) • (1 1 6 )  

s=-I  

With an appropriate choice of the rotations g; and gj for 
each symmetry element the symmetry conditions 
(Table 2) can be transformed into the most general 
form. 

8. Conclusions 

The orientation of a crystal in a polycrystalline sample 
may be described by an orthogonal transformation 
which transforms a sample coordinate system KA into a 
crystal coordinate system Ks. This transformation may 
either be a rotation or an operation of the second kind 
which changes a right-handed coordinate system into a 
left-handed one and vice versa. The orientation 
distribution function of crystals (the texture) thus 
consists of two functions of rotations, i.e. the orien- 
tation distribution functions of right-handed and 
left-handed crystal coordinate systems, respectively. 

With respect to orientation distribution functions, 
two different types of symmetries are to be taken into 
account, the crystal symmetry and the statistical 
sample symmetry. 

The rotational subgroup of crystal symmetry gives 
rise to symmetry conditions imposed upon the orien- 
tation distribution functions of the right-handed 
crystals and of the left-handed crystals, respectively. 

The elements of the second kind of crystal symmetry 
require a relationship between the two distribution 
functions such that in fact only one of them is really 
needed, corresponding to only one crystal form which 
is, at the same time, right-handed and left-handed. They 
do not, however, impose further symmetry conditions 
on this function. 

The elements of the second kind of crystal symmetry 
lead to a superposition of pole figures. As a con- 
sequence of this, only one part of the texture function, 
f (g) ,  is determinable by po~crystal diffraction experi- 
ments, the remaining part, f(g), is 'invisible' in all pole 
figures because of the specific properties of the 
'projection' by which the symmetrized pole figure is 
obtained from the orientation distribution function. 

The determinability condition may take on three 
different forms, namely l = even, l + m = even, l + m/2 
-- even, according to whether the crystal sym_metry 
contains the inversion centre, a mirror plane, or a 4 axis 
as an element of the second kind. In the case of normal 
scattering Friedel's law always adds an inversion 
centre. 

The sample symmetry may be considered in two 
different ways. In the conventional way, every crystal 
may have its symmetrical counterpart (in a statistical 
sense) in one or more symmetrically-related orien- 
tations. These may be right-handed crystals or left- 
handed ones as well. Symmetry is thus defined by a 
one-to-one relationship between crystal orientations. 

In a more general sense, sample symmetry can be 
defined by individual crystal directions falling into 
symmetrically-related sample directions. It is thus 
possible, for example, to have a centrosymmetrical 
sample consisting of only right-handed crystals of an 
enantiomorphic crystal symmetry. This non-conven- 
tional type of sample symmetry cannot be obtained by 
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a one-to-one relationship between crystals in two 
different orientations. It rather requires an integral 
relationship between an infinite number of crystal 
orientations. 

An exhaustive description of all possible kinds of 
sample symmetry cannot be given by a normal point 
symmetry group. It rather requires black-white Shub- 
nikov groups. 

The specific case of centrosymmetric crystals is 
especially important in texture analysis in metallurgy 
since the basic metals, crystallizing in f.c.c., b.c.c, and 
h.c.p, lattices, are centrosymmetric. The determin- 
ability condition l = even for this case has attracted 
much attention in the last few years. 

The non-centrosymmetric crystal classes are more 
important in mineralogical and geological problems. 
Applications of the present considerations to non- 
centrosymmetrical crystal classes have not yet been 
reported. Investigations in this direction are presently 
being carried out and will be published elsewhere. 
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Abstract 1. Introduetlon 

The structure factor of librating or orientationally 
disordered molecules with isotropic Gaussian distri- 
bution functions is calculated exactly by numerical 
integration. The computer program with an example is 
described. The results are compared with approxi- 
mation methods which correspond to a cumulant 
expansion of the structure factor. The application to the 
refinement of the plastic phases of C2C16 and SF6 is 
shown. The influence of anharmonic distributions is 
considered. The method is compared to the analysis 
with spherical cubic harmonics. 

• 0567-7394/81/060899-05501.00 

There are many crystal structures which contain 
groups of atoms where the binding forces within a 
group are higher than those to the surrounding atoms. 
Such groups are called 'rigid molecules' if the internal 
vibration frequencies are considerably higher than the 
external or lattice mode frequencies. With this 
definition charged groups are included also. 

For rigid molecules the thermal motion can be 
treated in a good approximation as the motion of a 
rigid body. But, also, disorder which is not of thermal 
origin can then be regarded as positional or orientation- 
© 1981 International Union of Crystallography 


